Speaker
Description
Human induced climate change poses a threat to global biodiversity. Broad scale effects of climate change are often assessed on the basis of long-term changes in climatic conditions. However, the effect of increasing frequency and intensity of extreme weather events (EWE) due to climate change on biodiversity remains unclear. We introduce a general framework to investigate the effects of EWE on species. As a case study we train coccupancy models for 132 German bird species of conservation interest (species requiring assessment under the EU Bird Protection Areas guidelines) with monthly specific weather and remote sensing data over the time period of 2000 to 2022. The species-specific models predict the occupancy through time from 1999 to 2022 for each month across Germany. With this approach, the suitability over all non-extreme months can be compared to the suitability in months with climatic extremes, to generate a measure of the impact of an extreme event on the distribution of a species. With this measure it is possible to identify geographic areas, species communities, taxonomic- and functional groups that may be vulnerable towards specific EWE.
Status Group | Doctoral Researcher |
---|