Tree Growth Responses to the 2018-2020 Drought: Roles of Drought-Tolerance Traits and Functional Dissimilarity to the Tree Neighbourhood

Lena Sachsenmaier^{1,2}, Florian Schnabel³, Pablo Castro Sánchez-Bermejo^{4,1}, Nico Eisenhauer^{1,5}, Olga Ferlian^{1,5}, Sylvia Haider^{6,4,1}, Ronny Richter^{1,2}, Bernhard Schuldt⁷, Fon Robinson Tezeh⁷, Christian Wirth^{1,2,8}

TreeDì 🚒

INTRODUCTION

stomatal control

Part 2

Can functional dissimilarity between the focal tree and it's neighbourhood support growth during drought?

RESULTS

- Trait Syndromes related to hydraulic safety and stomatal control are clear drivers of tree growth responses
- Having a safer hydraulic system becomes beneficial for a trees' growth during drought
- Having a higher stomatal control is a disadvantage during normal conditions, but becomes even beneficial during drought
- Neighbourhood tree species

monocultures of the MyDiv experiment.

richness modulates the relationship between the trees' growth and its functional identity

Part 2

A focal trees' functional dissimilarity to its neighbouring trees becomes beneficial during drought years

Functional Dissimilarity of the Focal Tree and its Tree Neighbourhood

(regarding PC2 traits)

- Trees with distinct hydraulic safety traits compared to their neighbors grow more during drought
- Trees with stomatal control traits distinct from their neighbors show much stronger growth during drought

Fig. 5: Focal trees' growth (as Basal Area Increment) predicted by its functional dissimilarity (in terms of (a) all drought-tolerance traits, (b) only PC1 traits, (c) only PC2 traits) to its neighbouring trees.

METHODS

- Site: tree diversity experiment in Germany (MyDiv)
- Using annual growth data (2015-2021) of 5,120 tree individuals
- measured 13 functional leaf and branch traits related to drought tolerance and resource use of 10 broad-leaved tree species in MyDiv

 Morphologica Stomata den Stomata size Specific Leaf Leaf Dry Mat 	al traits (leaf) sity Area ter Content
	 Physiological traits Stomatal conductance (mean during drought; residual conductance)
Xylem anatomical traits (branch) - Vessel density	 Water potential (Ψmin; ΔΨ; hydroscape area) Embolism resistance (P50)
Vessel sizeWood density	

- Using a focal tree's functional identity (PCA scores) and the species richness of its neighbourhood...
- Using a focal tree's dissimilarity to its neighbourhood... ...for modeling tree

growth during drought

CONCLUSION

- A trees' functional identity plays a crucial role under drought, as traits that are less advantageous in normal conditions can become beneficial during drought.
- A tree grows better under drought conditions if it is functionally more different from its neighbour trees.

1 German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena- Leipzig | 2 Systematic Botany and Functional Biodiversity, Leipzig University | 3 Chair of Silviculture, University of Freiburg | 4 Geobotany and Botanical Garden, Martin-Luther-University Halle-Wittenberg | 5 Institute of Biology, Leipzig University | 6 Institute of Ecology, Leuphana University of Lüneburg | 7 Forest Botany, Technical University of Dresden, Dresden, Germany | 8 Max-Planck Institute for Biogeochemistry, Jena, Germany

